Low Mach number limit of the full Navier-Stokes equations,

نویسنده

  • Thomas Alazard
چکیده

The low Mach number limit for classical solutions of the full Navier-Stokes equations is here studied. The combined effects of large temperature variations and thermal conduction are taken into account. In particular, we consider general initial data. The equations lead to a singular problem whose linearized is not uniformly well-posed. Yet, it is proved that the solutions exist and are uniformly bounded for a time interval which is independent of the Mach number Ma ∈ (0, 1], the Reynolds number Re ∈ [1,+∞] and the Péclet number Pe ∈ [1,+∞]. Based on uniform estimates in Sobolev spaces, and using a Theorem of G. Métivier and S. Schochet [30], we next prove that the penalized terms converge strongly to zero. This allows us to rigorously justify, at least in the whole space case, the well-known computations given in the introduction of the P.-L. Lions’ book [26].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Mach Number Flows and Combustion

We prove uniform existence results for the full Navier-Stokes equations for time intervals which are independent of the Mach number, the Reynolds number and the Péclet number. We consider general equations of state and we give an application for the low Mach number limit combustion problem introduced by Majda in [18].

متن کامل

Inviscid Incompressible Limits of the Full Navier–Stokes–Fourier System

We consider the full Navier-Stokes-Fourier system in the singular limit for the small Mach and large Reynolds and Péclet numbers, with ill prepared initial data on R 3. The Euler-Boussinesq approximation is identified as the limit system.

متن کامل

A Survey of the Compressible Navier-stokes Equations

This paper presents mathematical properties of solutions to the Navier-Stokes equations for compressible fluids. We first review existence results for the Cauchy problem, and describe some regularity properties of solutions in the presence of possibly vanishing densities. Finally, we address the problem of the low Mach number limit leading to incompressible models.

متن کامل

On the well-posedness of the full low-Mach number limit system in general critical Besov spaces

This work is devoted to the well-posedness issue for the low-Mach number limit system obtained from the full compressible Navier-Stokes system, in the whole space R with d ≥ 2. In the case where the initial temperature (or density) is close to a positive constant, we establish the local existence and uniqueness of a solution in critical homogeneous Besov spaces of type Ḃ p,1. If, in addition, t...

متن کامل

Lattice-Boltzmann type relaxation systems and high order relaxation schemes for the incompressible Navier-Stokes equations

A relaxation system based on a Lattice-Boltzmann type discrete velocity model is considered in the low Mach number limit. A third order relaxation scheme is developed working uniformly for all ranges of the mean free path and Mach number. In the incompressible Navier-Stokes limit the scheme reduces to an explicit high order finite difference scheme for the incompressible Navier-Stokes equations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006